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ABSTRACT:  Addition is one of the most basic operations performed in all computing units, including 

microprocessors and digital signal processors. It is also a basic unit utilized in various complicated algorithms of 

multiplication and division. Efficient implementation of an adder circuit usually revolves around reducing the cost to 

propagate the carry between successive bit positions. Multi-operand adders are important arithmetic design blocks 

especially in the addition of partial products of hardware multipliers. The multi-operand adders (MOAs) are widely 

used in the modern low-power and high-speed portable very-large-scale integration systems for image and signal 

processing applications such as digital filters, transforms, convolution neural network architecture. Hence, a new high-

speed and area efficient adder architecture is proposed using pre-compute bitwise addition followed by carry prefix 

computation logic to perform the three-operand binary addition that consumes substantially less area, low power and 

drastically reduces the adder delay. Further, this project is enhanced by using Modified carry bypass adder to further 

reduce more density and latency constraints. Modified carry skip adder introduces simple and low complex carry skip 

logic to reduce parameters constraints. In this proposal work, designed binary tree adder (BTA) is analysed to find the 

possibilities for area minimization. Based on the analysis, critical path of carry is taken into the new logic implementation 

and the corresponding design of CSKP is proposed for the BTA. 

Keywords: Multi-operand adders (MOAs), Binary Tree Adder (BTA), Carry Skip Adder (CSKP). 

 

I.INTRODUCTION: Besides technological scaling, advances in the field of computer architecture have also 

contributed to the exponential growth in performance of digital computer hardware. The flip-side of the rising processor 

performance is an unprecedented increase in hardware and software complexity. Increasing complexity leads to high 

development costs, difficulty with testability and verifiability, and less adaptability. The challenge in front of computer 

designers is therefore to opt for simpler, robust, and easily certifiable circuits. Computer arithmetic, here plays a key 

role aiding computer architects with this challenge. It is one of the oldest sub-fields of computer architecture. The bulk 

of hardware in earlier computers resided in the accumulator and other arithmetic/logic circuits. Successful operation 

of computer arithmetic circuits was taken for granted and high performance of these circuits has been routinely 
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expected. This context has been changing due to various reasons. First, at very high clock rates, the interfaces between 

arithmetic circuits and the rest of the processor become critical. Arithmetic circuits can no longer be designed and 

verified in isolation. Rather an integrated design optimization is required. Second, optimizing arithmetic circuits to meet 

the design goals by taking advantage of the strengths of new technologies, and making them tolerant to the weakness, 

requires a re-examination of existing design paradigms. Finally, incorporation of higher-level arithmetic primitives into 

hardware makes the design, optimization and verification efforts highly complex and interrelated. The core of every 

microprocessor, digital signal processor (DSP), and data processing application-specific integrated circuit (ASIC) is its 

datapath. With respect to the most important design criteria; critical delay, chip size, and power dissipation, the datapath 

is a crucial circuit component. The datapath comprises of various arithmetic units, such as comparators, adders, and 

multiplier [4]. The basis of every complex arithmetic operation is binary addition. Hence, it can be concluded, that 

binary addition is one of the most important arithmetic operation. The hardware implementation of an adder becomes 

even more critical due to the expensive carry-propagation step, the evaluation time of which is dependent on the 

operand word length. The efficient implementation of the addition operation in an integrated circuit is a key problem 

in VLSI design [8]. Productivity in ASIC design is constantly improved by the use of cell-based design techniques – 

such as standard cells, gate arrays, and field programmable gate arrays (FPGA), and low-level and high-level hardware 

synthesis [13]. This asks for adder architectures which result in efficient cell-based circuit realizations which can easily 

be synthesized. Furthermore, they should provide enough flexibility in order to accommodate custom timing and area 

constraints as well as to allow the implementation of customized adders. The tasks of a VLSI chip are the processing 

of data and the control of internal or external system components. This is typically done by algorithms which are based 

on logic and arithmetic operations on data items [10]. Applications of arithmetic operations in integrated circuits are 

manifold. Microprocessors and DSPs typically contain adders and multipliers in their datapath. Special circuit units for 

fast division and square-root operations are sometimes included as well. Adders, incrementers/decrementers, and 

comparators are often used for address calculation and flag generation purposes controllers. ASICs use arithmetic units 

for the same purposes. Depending on their application, they may even require dedicated circuit components for special 

arithmetic operators, such as for finite field arithmetic used in cryptography, error correction coding, and signal 

processing. 

 

II.LITERATURE SURVEY: 

The Multi-Operand Adders are generally implemented in two methods i.e Array Adders and Adder Tree structure. In 

Array Adder structure, two operands are added and output is added with third operand and continues the chain of 

addition until to get final sum output. It requires ‘K’ number of adder levels for addition of ‘K’ operands. But in case 

of Adder Tree structure the number of levels to add ‘K’ operands is less than that of Array Adders. It groups ‘K’ 

number of operands into sets of two operands. All the sets are added parallel in one level. The sum outputs from first 

level again grouped into sets of two operands and perform addition. This process continues until to get two operands 

and added in last level to obtain final sum. In each level it reduces number of operands to half. Therefore it requires 

log2 K levels. The Adder Tree structure is faster than Adder Array structure with same resources consumed by both 
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configurations. But the Array Adder is having regular routing than Adder Tree structure. The Ripple Carry Adder 

(RCA) or Carry Look Ahead Adder (CLA) are two general Carry Propagate Adders used in the above methods i.e. 

Array Adder, Adder Tree is Carry Propagate Adder. The delay of their CPA depends on bit length of operand. For 

N-bit operand the of RCA proportional to N and for CLA it is proportional tolog2 N. To reduce the delay these adders 

where implemented on FPGA by using dedicated carry chains [8]. The RCA on FPGA using fast carry chain is simpler 

than any other CPA topologies at an expense of high hardware cost [9]. The pipelining technique can be applied more 

effectively RCA [1]. The delay of Adder Tree using CPA is high due to carry propagation along the bit length. Carry 

Save Adder tree is used as another approach for implementing Multi-Operand Adders. Here the carry is directly 

propagated to next level instead of propagating in the same as in case of CPA. The advantage of Carry Save Adder 

(CSA) tree is utilized in ASIC implementation due to flexible routing. The critical path delay can be minimized by 

optimizing the interconnection between Full Adders. But to implement on FPGA the Ripple Carry Adder tree is 

preferred than CSA adder tree. When CSA tree is implemented on FPGA it become slower than RCA tree due to 

routing delay of CSA. However, a straightforward implementation on FPGAs [6] roughly requires double hardware 

than a carryripple adder, and does not exploit the fast carry chain to improve speed. 

III. PRE-COMPUTE BITWISE ADDITION FOLLOWED BY CARRY PREFIX COMPUTATION 

 

This method  presents a new adder technique and its VLSI architecture to perform the three-operand addition in 

modular arithmetic. The proposed adder technique is a parallel prefix adder. However, it has four-stage structures 

instead three-stage structures in prefix adder to compute the addition of three 

binary input operands such as bit-addition logic, base logic, PG (propagate and generate) logic and sum logic. The 

logical expression of all these four stages are defined as follows, 

Stage-1: Bit Addition Logic: 

 

 

Stage-2: Base Logic: 

 

Stage-3: PG (Generate and Propagate) Logic: 

 

Stage-4: Sum Logic: 
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Fig1. Proposed three-operand adder; (a) First order VLSI architecture, (b) Logical diagram of bit addition, base logic, 

sum logic, black-cell and grey-cell. 

 

The proposed VLSI architecture of the three-operand binary adder and its internal structure is shown in Fig. The new 

adder technique performs the addition of three n-bit binary inputs in four different stages. In the first stage (bit-addition 

logic), the bitwise addition of three n-bit binary input operands is performed with the array of full adders, and each full 

adder computes “sum (S_ i )” and “carry (cyi )” signals as highlighted in Fig. 3(a). The logical expressions for computing 

sum (S_ i ) and carry (cyi ) signals are defined in Stage-1, and the logical diagram of the bit-addition logic is shown in 

Fig. 3(b). In the first stage, the output signal “sum (S_ i )” bit of current full adder and the output signal “carry” bit of its 

right-adjacent full adder are used together to compute the generate (Gi ) and propagate (Pi ) signals in the second stage 

(base logic). The computation of Gi and Pi signals are represented by the “squared saltire-cell” as shown in Fig. 3(a) 

and there are n+1 number of saltire-cells in the base logic stage. The logic diagram of the saltire-cell is shown in Fig. 

3(b), and it is realized by the following logical expression, 

 

 

The external carry-input signal (Cin ) is also taken into consideration for three-operand addition in the proposed adder 

technique. This additional carry-input signal (Cin ) is taken as input to base logic while computing the G0 (S_ 0 · Cin ) 

in the first saltire-cell of the base logic. The third stage is the carry computation stage called “generate and propagate 

logic” (PG) to pre-compute the carry bit and is the combination of black and grey cell logics. The logical diagram of 
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black and grey cell is shown in Fig. 3(b) that computes the carry generate Gi: j and propagate Pi: j signals with the 

following logical expression,  

 

The number of prefix computation stages for the proposed adder is (log2 n+1), and therefore, the critical path delay of 

the proposed adder is mainly influenced by this carry propagate chain. The final stage is represented as sum logic in 

which the “sum (Si )” bits are computed from the carry generate Gi: j and carry propagate Pi bits using the logical 

expression, Si = (Pi _ Gi−1:0). The carryout signal (Cout ) is directly obtained from the carry generate bit Gn:0. 

IV.PROPOSED CARRY SKIP ADDER: 

The structure is based on combining the concatenation and the incrementation schemes [13] with the Conv-CSKA 

structure, and hence, is denoted by CI-CSKA. It provides us with the ability to use simpler carry skip logics. The logic 

replaces 2:1 multiplexers by AOI/OAI compound gates. The gates, which consist of fewer transistors, have lower delay, 

area, and smaller power consumption compared with those of the 2:1 multiplexer [7]. Note that, in this structure, as 

the carry propagates through the skip logics, it becomes complemented. Therefore, at the output of the skip logic of 

even stages, the complement of the carry is generated. The structure has a considerable lower propagation delay with a 

slightly smaller area compared with those of the conventional one. Note that while the power consumptions of the AOI 

(or OAI) gate are smaller than that of the multiplexer, the power consumption of the proposed CI-CSKA is a little 

more than that of the conventional one. This is due to the increase in the number of the gates, which imposes a higher 

wiring capacitance (in the noncritical paths). Now, we describe the internal structure of the proposed CI-CSKA shown 

in Fig. 2 in more detail. The adder contains two N bits inputs, A and B, and Q stages. Each stage consists of an RCA 

block with the size of Mj ( j = 1, . . . , Q). In this structure, the carry input of all the RCA blocks, except for the first 

block which is Ci , is zero (concatenation of the RCA blocks). Therefore, all the blocks execute their jobs 

simultaneously.  In this structure, when the first block computes the summation of its corresponding input bits (i.e., 

SM1, . . . , S1), and C1, the other blocks simultaneously compute the intermediate results [i.e., {ZK j+Mj , . . . , ZK j+2, 

ZK j+1} for K j = _j−1 r=1 Mr ( j = 2, . . . , Q)], and also Cj signals. In the proposed structure, the first stage has only 

one block, which is RCA. The stages 2 to Q consist of two blocks of RCA and incrementation. The incrementation 

block uses the 

 

Fig2: CI-CSKA structure. 
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intermediate results generated by the RCA block and the carry output of the previous stage to calculate the final 

summation of the stage. The internal structure of the incrementation block, which contains a chain of half-adders (HAs), 

is shown in Fig. 4. In addition, note that, to reduce the delay considerably, for computing the carry output of the stage, 

the carry output of the incrementation block is not used. As shown in Fig. 2, the skip logic determines the carry output 

of the j th stage (CO, j ) based on the intermediate results of the j th stage and the carry output of the previous stage 

(CO, j−1) as well as the carry output of the corresponding RCA block (Cj ). When determining CO, j , these cases may 

be encountered. When Cj is equal to one, CO, j will be one. On the other hand, when Cj is equal to zero, if the product 

of the intermediate results is one (zero), the value of CO, j will be the same as CO, j−1 (zero). The reason for using 

both AOI and OAI compound gates as the skip logics is the inverting functions of these gates in standard cell libraries. 

This way the need for an inverter gate, which increases the power consumption and delay, is eliminated. As shown in 

Fig., if an AOI is used as the skip  logic, the next skip logic should use OAI gate. In addition, another point to mention 

is that the use of the proposed skipping structure in the Conv-CSKA structure increases the delay of the critical path 

considerably. This originates from the fact that, in the Conv-CSKA, the skip logic (AOI or OAI compound gates) is 

not able to bypass the zero carry input until the zero carry input propagates from the corresponding RCA block. To 

solve this problem, in the proposed structure, we have used an RCA block with a carry input of zero (using the 

concatenation approach). This way, since the RCA block of the stage does not need to wait for the carry output of the 

previous stage, the output carries of the blocks are  calculated  in parallel. As mentioned before, the use of the static 

AOI and OAI gates (six transistors) compared with the static 2:1 multiplexer (12 transistors), leads to decreases in the 

area usage and delay of the skip logic. In addition, except for the first RCA block, the carry input for all other blocks is 

zero, and hence, for these blocks, the first adder cell in the RCA chain  is a HA. 

RESULTS: 

Proposed simulation:

 

Fig3: Proposed simulation output 
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Above simulation snapshot shows three operand binary adder using proposed method with a, b, c inputs and op as 

output sum of those inputs. One bunch of inputs are a=14, b=12, c=9; yielded output op=35 in decimal format. Addition 

among operands a, b, and c was takes place using two “two operand” “modified carry skip adder” s. Another bunch of 

inputs are also tested in same screen shot; those are a=3, b=5, c=6; yielded output op=14 in decimal format. Remaining 

variable ‘OP1’ represents intermediate signals of proposed designed method. 

Table1: Comparison table 

 

 

 

CONCLUSION: 

In this paper, a high-speed area-efficient adder technique and its VLSI architecture is proposed to perform the three 

operand binary addition for efficient computation. The proposed three-operand adder technique is a parallel prefix 

adder that uses four-stage structures to compute the addition of three input operands. The novelty of this proposed 

architecture is the reduction of delay and area in the prefix computation stages in PG logic and bit-addition logic. As an 

extension of this concept, a static CMOS CSKA structure called CI-CSKA was proposed, which exhibits a higher speed 

and lower energy consumption compared with those of the conventional one. The speed enhancement was achieved 

by modifying the structure through the concatenation and incrimination techniques. In addition, AOI and OAI 

compound gates were exploited for the carry skip logics.  
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